Олимпиадные задачи из источника «9 класс» - сложность 3-5 с решениями
9 класс
НазадВ треугольнике $ABC$ точки $P$ и $Q$ изогонально сопряжены. Прямая $PQ$ пересекает окружность $ABC$ в точке $X$. Прямая, симметричная $BC$ относительно $PQ$, пересекает прямую $AX$ в точке $E$. Докажите, что точки $A$, $P$, $Q$, $E$ лежат на одной окружности.
Точки $P$ и $Q$ выбираются на стороне $BC$ треугольника $ABC$ так, что $BP=CQ$. Отрезки $AP$ и $AQ$ в пересечении со вписанной в треугольник окружностью образуют четырехугольник $XYZT$. Найдите геометрическое место точек пересечения диагоналей таких четырехугольников.
Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.
В равнобедренном треугольнике $ABC$ ($AC=BC$) $O$ – центр описанной окружности, $H$ – ортоцентр, $P$ – такая точка внутри треугольника, что $\angle APH=\angle BPO=\pi/2$. Докажите, что $\angle PAC=\angle PBA=\angle PCB$.
Для каких $n>0$ можно отметить на плоскости несколько различных точек и несколько различных окружностей так, чтобы были выполнены следующие условия: - через каждую отмеченную точку проходит ровно $n$ отмеченных окружностей;
- на каждой отмеченной окружности лежит ровно $n$ отмеченных точек;
- у каждой отмеченной окружности отмечен еe центр?
Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.