Олимпиадные задачи из источника «XVIII Олимпиада по геометрии имени И.Ф. Шарыгина (2022 г.)» для 1-8 класса

Из точки $A$ к окружности $\Omega$ проведены касательные $AB$ и $AC$. На отрезке $BC$ отмечена середина $M$ и произвольная точка $P$. Прямая $AP$ пересекает окружность $\Omega$ в точках $D$ и $E$. Докажите, что общие внешние касательные к окружностям $MDP$ и $MPE$ пересекаются на средней линии треугольника $ABC$.

Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.

Прямая пересекает отрезок $AB$ в точке $C$. Какое максимальное число точек $X$ может найтись на этой прямой так, чтобы один из углов $AXC$ и $BXC$ был в два раза больше другого?

Дан выпуклый четырехугольник $ABCD$. Общие внешние касательные к окружностям $ABC$ и $ACD$ пересекаются в точке $E$, к окружностям $ABD$ и $BCD$ – в точке $F$. Докажите, что если точка $F$ лежит на прямой $AC$, то точка $E$ лежит на прямой $BD$.

Даны два одинаково ориентированных квадрата $A_1A_2A_3A_4$ и $B_1B_2B_3B_4$. Серединные перпендикуляры к отрезкам $A_1B_1$, $A_2B_2$, $A_3B_3$, $A_4B_4$ пересекают серединные перпендикуляры к отрезкам $A_2B_2$, $A_3B_3$, $A_4B_4$, $A_1B_1$ в точках $P$, $Q$, $R$, $S$ соответственно. Докажите, что $PR\perp QS$.

Пусть высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Окружность, описанная около треугольника $AHC$, пересекает отрезки $AB$ и $BC$ в точках $P$ и $Q$. Прямая $PQ$ пересекает $AC$ в $R$. На прямой $PH$ взята точка $K$ такая, что $\angle KAC = 90^{\circ}$. Докажите, что прямая $KR$ перпендикулярна одной из медиан треугольника $ABC$.

Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.

Хорды $AB$ и $CD$ окружности $\omega$ пересекаются в точке $E$, причем $AD = AE = EB$. На отрезке $CE$ отметили точку $F$, так что $ED = CF$. Биссектриса угла $AFC$ пересекает дугу $DAC$ в точке $P$. Докажите, что точки $A$, $E$, $F$ и $P$ лежат на одной окружности.

Дан равнобедренный треугольник $ABC$, $AB=AC$, $P$ – середина меньшей дуги $AB$ окружности $ABC$, $Q$ – середина отрезка $AC$. Окружность с центром в $O$, описанная около $APQ$, вторично пересекает $AB$ в точке $K$. Докажите, что прямые $PO$ и $KQ$ пересекаются на биссектрисе угла $ABC$.

Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.

Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.

Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.

Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?

Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.

Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.

Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.

Точка $M$ – середина большей боковой стороны $CD$ прямоугольной трапеции $ABCD$. Описанные около треугольников $BCM$ и $AMD$ окружности $\omega_1$ и $\omega_2$ пересекаются в точке $E$. Пусть $ED$ пересекает $\omega_1$ в точке $F$, а $FB$ пересекает $AD$ в $G$. Докажите, что $GM$ – биссектриса угла $BGD$.

Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$.

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.

Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$. а) Какое наибольшее число различных может быть среди них?

б) Найдите все возможные количества различных длин.

На плоскости даны восемь точек общего положения. В ряд выписали площади всех 56 треугольников с вершинами в этих точках. Докажите, что между выписанными числами можно поставить знаки «$+$» и «$-$» так, чтобы полученное выражение равнялось нулю.

В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка