Олимпиадные задачи из источника «XIX Олимпиада по геометрии имени И.Ф. Шарыгина (2023 г.)» для 10 класса - сложность 4 с решениями

Дан треугольник $ABC$ и окружности $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ с центрами $X$, $Y$, $Z$, $T$ соответственно такие, что каждая из прямых $BC$, $CA$, $AB$ высекает на них четыре равных отрезка. Докажите, что точка пересечения медиан треугольника $ABC$ делит отрезок с концами в $X$ и радикальном центре $\omega_2$, $\omega_3$, $\omega_4$ в отношении $2:1$, считая от $X$.

Пусть $E$ – проекция вершины $C$ прямоугольника $ABCD$ на диагональ $BD$. Докажите, что общие внешние касательные к окружностям $AEB$ и $AED$ пересекаются на окружности $AEC$.

В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$.

В остроугольном треугольнике $ABC$ $O$ – центр описанной окружности, $BM$ – медиана, $BH$ – высота. Окружности $AOB$ и $BHC$ повторно пересекаются в точке $E$, а окружности $AHB$ и $BOC$ – в точке $F$. Докажите, что $ME=MF$.

Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.

В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$.

Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.

Общая внешняя касательная к окружностям $\omega_1$ и $\omega_2$ касается их в точках $T_1$, $T_2$ соответственно. Пусть $A$ – произвольная точка на продолжении отрезка $T_1T_2$ за точку $T_1$, а $B$ – точка на продолжении отрезка $T_1T_2$ за точку $T_2$ такая, что $AT_1=BT_2$. Отличные от прямой $T_1T_2$ касательные из $A$ к $\omega_1$ и из $B$ к $\omega_2$ пересекаются в точке $C$. Докажите, что нагелианы всех треугольников $ABC$ из вершины $C$ проходят через одну точку.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка