Олимпиадные задачи из источника «9 класс»

В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$.

Точка $H$ – ортоцентр треугольника ${\sf T}$. Стороны треугольника ${\sf T}_1$ проходят через середины сторон треугольника ${\sf T}$ и перпендикулярны соответствующим биссектрисам ${\sf T}$. Вершины треугольника ${\sf T}_2$ являются серединами биссектрис треугольника ${\sf T}$. Докажите, что прямые, соединяющие $H$ с вершинами треугольника ${\sf T}_1$ перпендикулярны сторонам треугольника ${\sf T}_2$.

Остроугольный треугольник $ABC$ вписан в окружность $\Omega$. Пусть $H$ и $M$ – точка пересечения высот и середина стороны $BC$ соответственно. Прямая $HM$ пересекает окружность $\omega$, описанную около треугольника $BHC$, в точке $N\not=H$. На дуге $BC$ окружности $\omega$, не содержащей точку $H$, нашлась точка $P$ такая, что $\angle HMP=90^{\circ}$. Отрезок $PM$ пересекает $\Omega$ в точке $Q$. Точки $B'$ и $C'$ симметричны точке $A$ относительно точек $B$ и $C$ соответственно. Докажите, что описанные окружности треугольников $AB'C'$ и $PQN$ касаются.

На боковой стороне $BC$ равнобедренного треугольника $ABC$ выбрана точка $D$. Луч $AD$ пересекает прямую, проходящую через вершину $B$ и параллельную основанию $AC$, в точке $E$. Докажите, что касательная к описанной окружности треугольника $ABD$ в точке $B$ делит отрезок $EC$ пополам.

В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки

Дан треугольник $ABC$. Точки $A_1$, $A_2$, $B_1$, $B_2$ берутся на его описанной окружности так, что $A_1B_1\parallel AB$, $A_1A_2\parallel BC$, $B_1B_2\parallel AC$. Прямые $AA_2$ и $CA_1$ пересекаются в точке $A'$, а прямые $BB_2$ и $CB_1$ – в точке $B'$. Докажите, что все прямые $A'B'$ проходят через одну точку.

Можно ли поместить правильный треугольник внутрь правильного шестиугольника так, чтобы из любой вершины шестиугольника были видны все три вершины треугольника? (<i>Точка $A$ видна из точки $B$, если отрезок $AB$ не содержит внутренних точек треугольника.</i>)

В треугольнике $ABC$ отношение медианы $AM$ к стороне $BC$ равно $\sqrt{3}:2$. На сторонах $ABC$ отмечены точки, делящие каждую сторону на 3 равные части. Докажите, что какие-то 4 из этих 6 отмеченных точек лежат на одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка