Олимпиадные задачи из источника «Заочный тур»

Дан тетраэдр $ABCD$. Прямая $\ell$ пересекает плоскости $ABC$, $BCD$, $CDA$, $DAB$ в точках $D_0$, $A_0$, $B_0$, $C_0$ соответственно. Пусть $P$ – произвольная точка, не лежащая на прямой $\ell$ и в плоскостях граней тетраэдра, а $A_1$, $B_1$, $C_1$, $D_1$ – вторые точки пересечения прямых $PA_0$, $PB_0$, $PC_0$, $PD_0$ со сферами $PBCD$, $PCDA$, $PDAB$, $PABC$ соответственно. Докажите, что $P$, $A_1$, $B_1$, $C_1$, $D_1$ лежат на одной окружности.

Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.

В неравнобедренном треугольнике $ABC$ точка $M$ – середина $BC$, $P$ – ближайшая к $A$ точка пересечения луча $AM$ и вписанной окружности треугольника, $Q$ – дальняя от $A$ точка пересечения луча $AM$ и вневписанной окружности. Касательная к вписанной окружности в точке $P$ пересекает $BC$ в точке $X$, а касательная к вневписанной окружности в точке $Q$ пересекает $BC$ в точке $Y$. Докажите, что $MX=MY$.

Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно. Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.

В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$.

Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.

Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.

Общая внешняя касательная к окружностям $\omega_1$ и $\omega_2$ касается их в точках $T_1$, $T_2$ соответственно. Пусть $A$ – произвольная точка на продолжении отрезка $T_1T_2$ за точку $T_1$, а $B$ – точка на продолжении отрезка $T_1T_2$ за точку $T_2$ такая, что $AT_1=BT_2$. Отличные от прямой $T_1T_2$ касательные из $A$ к $\omega_1$ и из $B$ к $\omega_2$ пересекаются в точке $C$. Докажите, что нагелианы всех треугольников $ABC$ из вершины $C$ проходят через одну точку.

В треугольнике $ABC$ проведены высоты $AH_A$ и $BH_B$. Прямая $H_AH_B$ пересекает описанную окружность треугольника $ABC$ в точках $P$ и $Q$. Точка $A'$ симметрична точке $A$ относительно $BC$, точка $B'$ симметрична точке $B$ относительно $CA$. Докажите, что $A', B'$, $P$, $Q$ лежат на одной окружности.

Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (<i>Числом оборотов вокруг $O$</i>называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)

В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?

В треугольнике $ABC$ с тупым углом $B$ отмечены такие точки $P$ и $Q$ на $AC$, что $AP=PB$, $BQ=QC$. Окружность $BPQ$ пересекает стороны $AB$ и $BC$ в точках $N$ и $M$ соответственно. а) (<i>П.Рябов</i>) Докажите, что точка $R$ пересечения $PM$ и $NQ$ равноудалена от $A$ и $C$.

б) (<i>А.Заславский</i>) Пусть $BR$ пересекает $AC$ в точке $S$. Докажите, что $MN\perp OS$, где $O$ – центр описанной окружности треугольника $ABC$.

Пусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$.

Высоты $BE$ и $CF$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Перпендикуляр из $H$ к прямой $EF$ пересекает прямую $\ell$, проходящую через точку $A$ и параллельную $BC$, в точке $P$. Биссектрисы углов, образованных прямыми $\ell$ и $HP$, пересекают прямую $BC$ в точках $S$ и $T$. Докажите, что описанные окружности треугольников $ABC$ и $PST$ касаются.

Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$.

В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$.

На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.

Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка