Олимпиадные задачи из источника «9 класс» для 10 класса - сложность 2-3 с решениями

Пусть <i>P</i> – точка пересечения диагоналей четырёхугольника <i>ABCD, M</i> – точка пересечения прямых, соединяющих середины его противоположных сторон, <i>O</i> – точка пересечения серединных перпендикуляров к диагоналям, <i>H</i> – точка пересечения прямых, соединяющих ортоцентры треугольников <i>APD</i> и <i>BPC, APB</i> и <i>CPD</i>. Доказать, что <i>M</i> – середина <i>OH</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка