Олимпиадные задачи из источника «8-9 класс» для 8-9 класса - сложность 2 с решениями
8-9 класс
НазадПусть <i>I</i> – центр окружности, вписанной в треугольник <i>ABC</i>. Oкружность, описанная около треугольника <i>BIC</i>, пересекает прямые <i>AB</i> и <i>AC</i> в точках <i>E</i> и <i>F</i> соответственно. Докажите, что прямая <i>EF</i> касается окружности, вписанной в треугольник <i>ABC</i>.
Постройте параллелограмм <i>ABCD</i>, если на плоскости отмечены три точки: середины его высот <i>BH</i> и <i>BP</i> и середина стороны <i>AD</i>.
Дан равнобедренный прямоугольный треугольник <i>ABC</i>. Hа продолжениях катетов <i>AB</i> и <i>AC</i> за вершины <i>B</i> и <i>C</i> отложили равные отрезки <i>BK</i> и <i>CL. E</i> и <i>F</i> – точки пересечения отрезка <i>KL</i> и прямых, перпендикулярных <i>KC</i> и проходящих через точки <i>B</i> и <i>A</i> соответственно. БикЮ Докажите, что <i>EF = FL</i>.