Олимпиадные задачи из источника «03 (2005 год)» для 10 класса - сложность 3 с решениями
03 (2005 год)
НазадBнутри треугольника <i>ABC</i> выбрана произвольная точка <i>M</i>. Докажите, что <i>MA + MB + MC</i> ≤ max {<i>AB + BC, BC + AC, AC + AB</i>}.
B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.