Олимпиадные задачи из источника «2012 год» для 11 класса - сложность 2 с решениями

На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?

К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?

В треугольнике <i>ABC</i> высоты или их продолжения пересекаются в точке <i>H</i>, а <i>R</i> – радиус его описанной окружности.

Докажите, что если  ∠<i>A</i> ≤ ∠<i>B</i> ≤ ∠<i>C</i>,  то  <i>AH + BH</i> ≥ 2<i>R</i>.

Для заданных значений <i>a, b, c</i> и <i>d</i> оказалось, что графики функций  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_2.gif">  и  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_3.gif">  имеют ровно одну общую точку. Докажите, что графики функций  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_4.gif">  и  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_5.gif">  также имеют ровно одну общую точку.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка