Олимпиадные задачи из источника «2012 год» для 10 класса

Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества  {1, 2, 3, ..., 2<i><sup>k</sup></i>},  а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.

Дан остроугольный треугольник <i>ABC</i>. Для произвольной прямой <i>l</i> обозначим через <i>l<sub>a</sub></i>, <i>l<sub>b</sub></i>, <i>l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно сторон треугольника, а через <i>I<sub>l</sub></i> – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек <i>I<sub>l</sub></i>.

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

Из плоскости вырезали равносторонний треугольник.

Можно ли оставшуюся часть плоскости замостить треугольниками, любые два из которых подобны, но не гомотетичны?

В клетках таблицы <i>n×n</i> стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за <i>n</i> ходов.

Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.

а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.

Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

В стране Далёкой провинция называется <i>крупной</i>, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка