Олимпиадные задачи из источника «9 класс» - сложность 4 с решениями
9 класс
НазадСтороны треугольника <i>ABC</i> видны из точки <i>T</i> под углами 120°. Докажите, что прямые, симметричные прямым <i>AT, BT</i> и <i>CT</i> относительно прямых <i>BC, CA</i> и <i>AB</i> соответственно, пересекаются в одной точке.
В однокруговом футбольном турнире играли  <i>n</i> > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
б) При каком наименьшем <i>n</i> могут не найтись пять таких команд?