Олимпиадные задачи из источника «9 класс» для 3-10 класса - сложность 2-3 с решениями
9 класс
НазадВыпуклая фигура <i>F</i> обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу <i>F</i>. Обязательно ли <i>F</i> – круг?
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
На параболе <i>y = x</i>² выбраны четыре точки <i>A, B, C, D</i> так, что прямые <i>AB</i> и <i>CD</i> пересекаются на оси ординат.
Найдите абсциссу точки <i>D</i>, если абсциссы точек <i>A, B</i> и <i>C</i> равны <i>a, b</i> и <i>c</i> соответственно.
Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?