Олимпиадные задачи из источника «1998 год» - сложность 4 с решениями
Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
для простоты шестёренки считаются кругами;
шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.
Натуральные числа от 1 до <i>n</i> расставляются в ряд в произвольном порядке. Расстановка называется <i>плохой</i>, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются <i>хорошими</i>. Докажите, что количество хороших расстановок не превосходит 81<sup><i>n</i></sup>.
На пол положили правильный треугольник<i>ABC</i>, выпиленный из фанеры. В пол вбили три гвоздя (по одному вплотную к каждой стороне треугольника) так, что треугольник невозможно повернуть, не отрывая от пола. Первый гвоздь делит сторону<i>AB</i>в отношении 1 : 3, считая от вершины<i>A</i>, второй делит сторону<i>BC</i>в отношении 2 : 1, считая от вершины<i>B</i>. В каком отношении делит сторону<i>AC</i>третий гвоздь?
На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.