Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 1-4 с решениями

Дан треугольник<i>ABC</i>,<i>AD</i>и<i>BE</i>— его биссектрисы. Известно, что<i>AC</i>><i>BC</i>. Доказать, что<i>AE</i>><i>DE</i>><i>BD</i>.

Имеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на <i>k</i> равных по массе групп.

Доказать, что не менее чем <i>k</i> способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на <i>k</i> равных по массе групп.

Доказать, что в произвольном выпуклом 2<i>n</i>-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка