Олимпиадные задачи из источника «10 класс, 2 тур» - сложность 1-4 с решениями
10 класс, 2 тур
НазадИмеется натуральное число <i>n</i> > 1970. Возьмём остатки от деления числа 2<sup><i>n</i></sup> на 2, 3, 4, ..., <i>n</i>. Доказать, что сумма этих остатков больше 2<i>n</i>.
Доказать, что если натуральное число <i>k</i> делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.