Олимпиадные задачи из источника «9 класс, 2 тур» для 9-10 класса - сложность 2 с решениями

На окружности радиуса 1 отмечена точка<i>O</i>и из неё циркулем делается засечка вправо радиусом<i>l</i>. Из полученной точки<i>O</i><sub>1</sub>в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?

На плоскости нарисован правильный многоугольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub>. Можно ли выбрать в плоскости множество точек, обладающее следующим свойством: через любую точку, не лежащую внутри пятиугольника, можно провести отрезок, концы которого являются точками нашего множества, а через точки, лежащие внутри пятиугольника, такого отрезка провести нельзя. <b>Примечание.</b>

  1. Отрезок проходит через любую свою точку, в частности, через свой конец.

  2. "Внутри" — значит строго внутри.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка