Олимпиадные задачи из источника «9 класс, 2 тур» для 7-8 класса - сложность 2-5 с решениями
9 класс, 2 тур
НазадИзвестно, что <i>a<sup>n</sup> – b<sup>n</sup></i> делится на <i>n</i> (<i>a, b, n</i> – натуральные числа, <i>a ≠ b</i>). Доказать, что <img width="60" height="51" align="MIDDLE" border="0" src="/storage/problem-media/78682/problem_78682_img_2.gif"> делится на <i>n</i>.
Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле (если только оно свободно), соблюдая следующие правила: нельзя увеличивать расстояние между королями (расстоянием между двумя полями называется наименьшее число шагов короля, за которое он может пройти с одного поля на другое: так, в начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто поставит своего короля на противоположную кромку доски (белого короля на вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?
На окружности радиуса 1 отмечена точка<i>O</i>и из неё циркулем делается засечка вправо радиусом<i>l</i>. Из полученной точки<i>O</i><sub>1</sub>в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?