Олимпиадные задачи из источника «9 класс, 2 тур» для 11 класса - сложность 2-5 с решениями
9 класс, 2 тур
НазадНа каждой стороне треугольника<i>ABC</i>построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник<i>ABC</i>— равнобедренный.
Дана последовательность целых положительных чисел<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>...<i>X</i><sub>n</sub>, все элементы которой не превосходят некоторого числа<i>M</i>. Известно, что при всех<i>k</i>> 2<i>X</i><sub>k</sub>= |<i>X</i><sub>k - 1</sub>-<i>X</i><sub>k - 2</sub>|. Какой может быть максимальная длина этой последовательности?