Олимпиадные задачи из источника «1966 год» для 10 класса - сложность 3 с решениями

На клетчатой доске 11×11 отмечено 22 клетки так, что на каждой вертикали и на каждой горизонтали отмечено ровно две клетки. Два расположения отмеченных клеток эквивалентны, если, меняя любое число раз вертикали между собой и горизонтали между собой, мы из одного расположения можем получить другое. Сколько существует неэквивалентных расположений отмеченных клеток?

Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них не было выбрать двух кучек равного веса. Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.

Доказать, что те натуральные <i>K</i>, для которых  <i>K<sup>K</sup></i> + 1  делится на 30, образуют арифметическую прогрессию. Найти её.

При каком значении<i>K</i>величина<i>A</i><sub>k</sub>=${\dfrac{19^k+66^k}{k!}}$максимальна?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка