Олимпиадные задачи из источника «11 класс, 1 тур» для 2-9 класса - сложность 2-3 с решениями
11 класс, 1 тур
НазадДаны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?
В квадратном уравнении <i>x</i>² + <i>px + q</i> коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.