Олимпиадные задачи из источника «10 класс, 2 тур» - сложность 4 с решениями

В ящике лежат два ящика поменьше, в каждом из них ещё по два ящика и т.д. <i>n</i> раз. В каждом из 2<sup><i>n</i></sup> маленьких ящиков лежит по монете, причём одни вверх гербом, а остальные – вверх решкой. За один ход разрешается перевернуть один любой ящик вместе со всем, что в нём лежит. Доказать, что не больше, чем за <i>n</i> ходов можно расположить ящики так, что число монет, лежащих вверх гербом, будет равно числу монет, лежащих вверх решкой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка