Олимпиадные задачи из источника «11 класс, 2 тур» - сложность 3 с решениями

В треугольнике <i>ABC</i> сторона <i>BC</i> равна полусумме двух других сторон. Через точку <i>A</i> и середины <i>B', C'</i> сторон <i>AB</i> и <i>AC</i> проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром <i>I</i> вписанной окружности треугольника <i>ABC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка