Олимпиадные задачи из источника «1963 год» для 2-7 класса - сложность 3 с решениями
Дан произвольный треугольник<i>ABC</i>и такая прямая<i>l</i>, пересекающая треугольник, что расстояние от неё до точки<i>A</i>равно сумме расстояний до этой прямой от точек<i>B</i>и<i>C</i>(причем<i>B</i>и<i>C</i>лежат по одну сторону от<i>l</i>). Доказать, что все такие прямые проходят через одну точку.