Олимпиадные задачи из источника «8 класс, 1 тур» для 9 класса - сложность 3 с решениями
8 класс, 1 тур
НазадНа сторонах<i>AB</i>,<i>BC</i>,<i>CA</i>правильного треугольника<i>ABC</i>найти такие точки<i>X</i>,<i>Y</i>,<i>Z</i>(соответственно), чтобы площадь треугольника, образованного прямыми<i>CX</i>,<i>BZ</i>,<i>AY</i>, была вчетверо меньше площади треугольника<i>ABC</i>и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$