Олимпиадные задачи из источника «10 класс, 1 тур» для 8 класса - сложность 2-4 с решениями

Дана окружность и точка <i>A</i> внутри неё.

Найдите геометрическое место вершин <i>C</i> всевозможных прямоугольников <i>ABCD</i>, где точки <i>B</i> и <i>D</i> лежат на окружности.

<i>a, b</i>и<i>n</i>– натуральные числа, и<i>n</i>нечётно. Докажите, что если числитель и знаменатель дроби  <img align="absmiddle" src="/storage/problem-media/78218/problem_78218_img_2.gif">  делятся на<i>n</i>, то и сама дробь делится на<i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка