Олимпиадные задачи из источника «9,10 класс, 2 тур» - сложность 3-5 с решениями

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...<i>a</i><sub>n</sub>равны +1, остальные равны -1. Доказать, что<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="LEFT">2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$<i>a</i><sub>1</sub> + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка