Олимпиадные задачи из источника «1939 год» для 4-8 класса - сложность 3 с решениями

Даны два многочлена от переменной <i>x</i> с целыми коэффициентами. Произведение их есть многочлен от переменной <i>x</i> с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

Разложить на целые рациональные множители выражение  <i>a</i><sup>10</sup> + <i>a</i><sup>5</sup> + 1.

Даны три точки<i>A</i>,<i>B</i>,<i>C</i>. Через точку<i>A</i>провести прямую так, чтобы сумма расстояний от точек<i>B</i>и<i>C</i>до этой прямой была равна заданному отрезку.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка