Олимпиадные задачи из источника «7 класс»
7 класс
НазадПетя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?
Дед звал внука к себе в деревню:
– Вот посмотришь, какой я необыкновенный сад посадил! У меня там растут груши и яблони, причём яблони посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
– Ну и что тут интересного, – ответил внук. – У тебя, значит, яблонь вдвое меньше, чем груш.
– А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду вдвое больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда.
Год проведения нынешнего математического праздника делится на его номер: 2006 : 17 = 118.
а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.
Наташа сделала из листа клетчатой бумаги календарь на январь 2006 года (см. рисунок) и заметила, что центры клеток 10, 20 и 30 января образуют равнобедренный прямоугольный треугольник. Наташа предположила, что это будет верно и в любом другом году, за исключением тех лет, когда центры клеток 10, 20 и 30 лежат на одной прямой. Права ли Наташа?<div align="center"><img src="/storage/problem-media/104065/problem_104065_img_2.gif"></div>
Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.<div align="center"><img src="/storage/problem-media/104064/problem_104064_img_2.gif"></div>
Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?