Олимпиадные задачи из источника «7 класс»
7 класс
НазадОтметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок). <img src="/storage/problem-media/103867/problem_103867_img_2.gif"> Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.
Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)
Приходя в тир, игрок вносит в кассу 100 рублей. После каждого удачного выстрела количество его денег увеличивается на 10%, а после каждого промаха – уменьшается на 10%. Могло ли после нескольких выстрелов у него оказаться 80 рублей 19 копеек?
В книге рекордов Гиннесса написано, что наибольшее известное простое число равно 23021<sup>377</sup> – 1. Не опечатка ли это?