Олимпиадные задачи из источника «1994 год» для 2-6 класса
Когда Незнайку попросили придумать задачу для математической олимпиады в Солнечном городе, он написал ребус (см. рисунок). Можно ли его решить? (Разным буквам должны соответствовать разные цифры.)<img src="/storage/problem-media/103784/problem_103784_img_2.gif">
Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся
а) 15 одноклассников;
б) 16 одноклассников?
Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.
Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.
Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?