Олимпиадные задачи из источника «ВМШ 57 школы» для 6 класса - сложность 2 с решениями
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки?
Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?
В дремучем Муромском лесу из-под земли бьют десять источников мёртвой воды: от N 1 до N 10. Из первых девяти источников мёртвую воду может взять каждый, но источник N 10 находится в пещере Кощея, в которую никто, кроме самого Кощея, попасть не может.
На вкус и цвет мёртвая вода ничем не отличается от обыкновенной, однако, если человек выпьет из какого-нибудь источника, он умрёт. Спасти его может только одно: если он запьёт ядом из источника, номер которого больше. Например, если он выпьет из седьмого источника, то ему надо обязательно запить ядом N 8, N 9 или N 10. Если он выпьет не седьмой яд, а девятый, ему может помочь только яд N 10. А если он сразу выпьет десятый яд, то ему уже ничто не поможет.
Иванушка-дурачок вызвал Кощея на дуэль. Условия дуэли были такие: каждый приносит с собо...
На доске написаны числа
а) 1, 2. 3, ..., 1997, 1998;
б) 1, 2, 3, ..., 1998, 1999;
в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?
На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?
Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.
Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?