Олимпиадные задачи из источника «10. Четность»
10. Четность
НазадМожет ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
а) (2<i>n</i>+1)-угольника; б) 2<i>n</i>-угольника?
На шахматной доске расставлены 8 ладей так, что они не бьют друг друга. Докажите, что на полях чёрного цвета расположено чётное число ладей.
На прямой даны точки <i>А, В</i> и, кроме того, 57 точек, лежащих вне отрезка <i>АВ</i>. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
<i>S</i><sub>1</sub> – сумма расстояний от точки <i>А</i> до всех красных точек плюс сумма расстояний от точки <i>В</i> до всех синих точек;
<i>S</i><sub>2</sub> – сумма расстояний от точки <i>А</i> до всех синих точек плюс сумма расстояний от точки <i>В</i> до всех красных точек.
Доказать, что <i>S</i><sub>1</sub> ≠ <i>S</i><sub>2</sub>.
На доске написаны числа
а) 1, 2. 3, ..., 1997, 1998;
б) 1, 2, 3, ..., 1998, 1999;
в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?
Доказать: произведение
а) двух нечётных чисел нечётно;
б) чётного числа с любым целым числом чётно.
Доказать: сумма
а) любого количества чётных слагаемых чётна;
б) чётного количества нечётных слагаемых чётна;
в) нечётного количества нечётных слагаемых нечётна.
Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.