Олимпиадные задачи из источника «4. Логика и логики»

На международный конгресс приехало 578 делегатов из разных стран. Любые три делегата могут поговорить между собой без помощи остальных (при этом, возможно, одному из них придется переводить разговор двух других). Докажите, что всех делегатов можно поселить в двухместных номерах гостиницы таким образом, чтобы любые двое, живущие в одном номере, могли поговорить без посторонней помощи.

(Продолжение задачи<a href="https://mirolimp.ru/tasks/132792">132792</a>) Путешественник, попавший в государство, встретил четырех людей из задачи 3 и задал им вопрос:"Кто вы?".   Он получил такие ответы: 1-ый: "Все мы лжецы". 2-ой: "Среди нас 1 лжец". 3-ий: "Среди нас 2 лжеца". 4-ый: "Я ни разу не соврал и сейчас не вру". Путешественник быстро сообразил, кем является четвертый житель. Как он это сделал?

В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

Государство Диполия населено лжецами и рыцарями, причем лжецы всегда лгут, а рыцари всегда говорят правду. Путешественник едет по этой стране в сопровождении официального гида и знакомится с другим жителем. "Вы, конечно, рыцарь?" -- спрашивает он. Туземец его понимает и отвечает "Ырг", что значает то ли "да", то ли "нет". На просьбу перевести гид говорит: "Он сказал -- да. Добавлю, что на самом деле он лжец". А вы как думаете?

Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

Известно, что среди членов правительства Лимонии (а всего в нем 20 членов) заведомо имеется хотя бы один честный, а также что из любых двух хотя бы один -- взяточник. Сколько в правительстве взяточников?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка