Олимпиадные задачи из источника «Занятие 18. Игры» для 2-10 класса
Занятие 18. Игры
НазадВ угловой клетке таблицы 5×5 стоит плюс, а в остальных клетках стоят минусы. Разрешается в любой строке или любом столбце поменять знаки на противоположные. Можно ли за несколько таких операций получить все знаки плюсами?
Докажите, что число состоящее из 243 единиц делится на 243.
За весну Обломов похудел на 25%, затем за лето прибавил в весе 20%, за осень похудел на 10%, а за зиму прибавил 20%.
Похудел ли он или поправился за год?
В первой кучке лежит 100 конфет, а во второй — 200 конфет. За ход можно взять любое количество конфет из любой кучки. Выигрывает взявший последнюю. Кто выигрывает при правильной игре?
<b>Игра с тремя кучками камней.</b>Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
<b>Игра с «доминошками».</b>Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
<b>Игра с 25-ю монетами.</b>В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.
Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?