Олимпиадные задачи из источника «1998 год» для 4-7 класса
Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
В треугольнике <i>ABC</i> отрезки <i>CM</i> и <i>BN</i> – медианы, <i>P</i> и <i>Q</i> – точки соответственно на <i>AB</i> и <i>AC</i> такие, что биссектриса угла <i>C</i> треугольника одновременно является биссектрисой угла <i>MCP</i>, а биссектриса угла <i>B</i> – биссектрисой угла <i>NBQ</i>. Можно ли утверждать, что треугольник <i>ABC</i> равнобедренный, если
а) <i>BP = CQ</i>;
б) <i>AP = AQ</i>;
в) <i>PQ || BC</i>?