Олимпиадные задачи из источника «1998 год» для 11 класса - сложность 1-3 с решениями
Внутренняя точка <i>M</i> выпуклого четырёхугольника <i>ABCD</i> такова, что треугольники <i>AMB</i> и <i>CMD</i> – равнобедренные с углом величиной 120° при вершине <i>M</i>.
Докажите существование такой точки <i>N</i>, что треугольники <i>BNC</i> и <i>DNA</i> – правильные.
Верны ли утверждения:
а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.