Олимпиадные задачи из источника «1989 год» - сложность 2 с решениями
Докажите, что <i>a</i>²<i>pq + b</i>²<i>qr + c</i>²<i>rp</i> ≤ 0, если <i>a, b, c</i> – стороны треугольника; а <i>p, q, r</i> – любые числа, удовлетворяющие условию <i>p + q + r</i> = 0.