Олимпиадные задачи из источника «1984 год» для 2-11 класса - сложность 2-3 с решениями

В какое наименьшее число цветов нужно раскрасить клетки бесконечного листа клетчатой бумаги, чтобы

  а) каждые две клетки на расстоянии 6 были покрашены в разные цвета?   б) каждые четыре клетки, образующие фигуру формы буквы Г, были покрашены в четыре разных цвета? (Расстояние между клетками – наименьшее число линий сетки, горизонтальных и вертикальных, которые должна пересечь ладья на пути из одной клетки в другую.)

Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).

Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка