Олимпиадные задачи из источника «параграф 12. Точки Брокара» для 10 класса - сложность 1-5 с решениями
параграф 12. Точки Брокара
НазадОпустим из точки<i>M</i>перпендикуляры<i>MA</i><sub>1</sub>,<i>MB</i><sub>1</sub>и<i>MC</i><sub>1</sub>на прямые<i>BC</i>,<i>CA</i>и<i>AB</i>. Для фиксированного треугольника<i>ABC</i>множество точек<i>M</i>, для которых угол Брокара треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>имеет заданное значение, состоит из двух окружностей, причем одна из них расположена внутри описанной окружности треугольника<i>ABC</i>, а другая вне ее (<i>окружности Схоуте</i>).
Докажите, что для угла Брокара$\varphi$выполняются следующие неравенства: а)$\varphi^{3}{}$$\le$($\alpha$-$\varphi$)($\beta$-$\varphi$)($\gamma$-$\varphi$); б)8$\varphi^{3}{}$$\le$$\alpha$$\beta$$\gamma$(<i>неравенство Йиффа</i>).