Олимпиадные задачи из источника «параграф 1. Наименьший или наибольший угол» для 9 класса - сложность 5 с решениями

а) Длины биссектрис треугольника не превосходят 1. Докажите, что его площадь не превосходит 1/$\sqrt{3}$. б) На сторонах<i>BC</i>,<i>CA</i>и<i>AB</i>треугольника<i>ABC</i>взяты точки<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и<i>C</i><sub>1</sub>. Докажите, что если длины отрезков<i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>и<i>CC</i><sub>1</sub>не превосходят 1, то площадь треугольника<i>ABC</i>не превосходит1/$\sqrt{3}$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка