Олимпиадные задачи из источника «параграф 4. Композиции симметрий» для 10 класса - сложность 2-3 с решениями
параграф 4. Композиции симметрий
НазадВписанная окружность касается сторон треугольника <i>ABC</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>; точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что <i>A</i><sub>2</sub><i>B</i><sub>2</sub> || <i>AB</i> и прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub> и <i>CC</i><sub>2</sub> пересекаются в одной точке.