Олимпиадные задачи из источника «глава 16. Неравенства» для 11 класса

Докажите, что если   <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ ... ≥ <i>a<sub>n</sub></i>,   <i>b</i><sub>1</sub> ≥ <i>b</i><sub>2</sub> ≥ ... ≥ <i>b<sub>n</sub></i>,   то наибольшая из сумм вида   <i>a</i><sub>1</sub><i>b</i><sub><i>k</i><sub>1</sub></sub> + <i>a</i><sub>2</sub><i>b</i><sub><i>k</i><sub>2</sub></sub> + ... + <i>a<sub>n</sub>b<sub>k<sub>n</sub></sub></i>     (<i>k</i><sub>1</sub>, <i>k</i><sub>2&lt...

<i>n</i> – натуральное число. Докажите, что  <i>n<sup>n</sup></i> > (<i>n</i> + 1)<sup><i>n</i>–1</sup>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка