Олимпиадные задачи из источника «параграф 2. Комплексные числа и геометрия» для 11 класса

На плоскости расположены 4 прямые общего положения. Каждым трем прямым поставим в соответствие окружность, проходящую через точки их пересечения. Докажите, что 4 полученных окружности проходят через одну точку.

Пусть <i>u</i> – точка на единичной окружности  <i>z</i><img width="12" height="14" align="BOTTOM" border="0" src="/storage/problem-media/61197/problem_61197_img_2.gif"> = 1  и <i>u</i><sub>1</sub>, <i>u</i><sub>2</sub>, <i>u</i><sub>3</sub> – основания перпендикуляров, опущенных из <i>u</i> на стороны <i>a</i><sub>2</sub><i>a</i><sub>3</sub>, <i>a</i><sub>1</sub><i>a</i><sub>3</sub>, <i>a</i><sub>1</sub><i>a</i><sub>2</sub> вписанного в эту окружностьтреугольника <i>a</i>&lt...

Докажите, что точка  <i>m</i> = <sup>1</sup>/<sub>3</sub> (<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub>)  является точкой пересечения медиан треугольника <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub>.

Точки <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub> и <i>a</i><sub>3</sub> расположены на единичной окружности  <i>z<span style="text-decoration: overline;">z</span></i> = 1.

Докажите, что точка  <i>h = a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub>  является ортоцентром треугольника с вершинами в точках <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub> и <i>a</i><sub>3</sub>.

На плоскости даны три окружности <i>S</i><sub>1</sub>, <i>S</i><sub>2</sub> и <i>S</i><sub>3</sub>. Докажите, что если две радикальных оси этих окружностей пересекаются в точке <i>Q</i>, то третья радикальная ось также проходит через эту точку.

Точка <i>Q</i> называется <i>радикальным центром</i> окружностей <i>S</i><sub>1</sub>, <i>S</i><sub>2</sub> и <i>S</i><sub>3</sub>.

Докажите, что геометрическое место точек <i>M</i>, cтепень которых относительно окружностей <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> одинакова, является прямой.

Такая прямая называется <i>радикальной осью</i> окружностей <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>.

Докажите, что cтепень точки <i>w</i> относительно окружности  <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0  равна   <img align="absmiddle" src="/storage/problem-media/61190/problem_61190_img_2.gif">

Пусть уравнение некоторой прямой или окружности имеет вид  <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0.  Пусть образ этой линии при отображении  <img width="100" align="absMIDDLE" border="0" src="/storage/problem-media/61189/problem_61189_img_2.gif">  задается уравнением  <i>A'z<span style="text-decoration: overline;">z</span> + B'z – <span style="text-decoration: overline;">B'</span> <span style="text-decoration: overline;">z</span> + C'</i>...

Докажите, что инверсия переводит каждую окружность или прямую линию снова в окружность или прямую линию.

Представьте в виде композиции дробно-линейного отображения   <i>w</i> = <img width="37" height="35" align="MIDDLE" border="0" src="/storage/problem-media/61187/problem_61187_img_2.gif">  и комплексного сопряжения   <i>w = <span style="text-decoration: overline;">z</span></i>  инверсию относительно окружности

  а) с центром <i>i</i> и радиусом <i>R</i> = 1;

  б) с центром  <i>Re</i><sup><i>i</i>φ</sup>  и радиусом <i>R</i>;

  в) с центром <i>z</i><sub>0</sub> и радиусом <i>R</i>.

Докажите, что отображение  <i>w</i> = <img width="14" height="34" align="MIDDLE" border="0" src="/storage/problem-media/61186/problem_61186_img_2.gif">  является инверсией относительно единичной окружности.

Докажите, что уравнение  <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0  при отображениях  <i>w = z + u</i>  и  <i>w = <sup>R</sup></i>/<sub><i>z</i></sub>  переходит в уравнение такого же вида. Получите из этого круговое свойство дробно-линейных отображений (см. задачу <a href="https://mirolimp.ru/tasks/161183">161183</a>).

Докажите, что уравнение окружности (или прямой) на комплексной плоскости всегда может быть записано в виде  <i>Az<span style="text-decoration: overline;">z</span> + Bz – <span style="text-decoration: overline;">B</span> <span style="text-decoration: overline;">z</span> + C</i> = 0,  где <i>A</i> и <i>C</i> – чисто мнимые числа.

Докажите, что дробно-линейное отображение переводит каждую окружность или прямую линию снова в окружность или прямую линию.

Как изменяется двойное отношение  <i>W</i>(<i>z</i><sub>1</sub>, <i>z</i><sub>2</sub>, <i>z</i><sub>3</sub>, <i>z</i><sub>4</sub>)  при действии отображения  <img width="100" align="absMIDDLE" border="0" src="/storage/problem-media/61182/problem_61182_img_2.gif">?

<i>Двойным отношением</i> четырёх комплесных чисел называется число   <img align="absmiddle" src="/storage/problem-media/61181/problem_61181_img_2.gif">   (см. задачу <a href="https://mirolimp.ru/tasks/161180">161180</a>). Пусть <i>w</i><sub>1</sub>, <i>w</i><sub>2</sub>, <i>w</i><sub>3</sub>, <i>w</i><sub>4</sub> – четыре точки плоскости, в которые дробно-линейное отображение  <img width="100" align="absMIDDLE" border="0" src="/storage/problem-media/61181/problem_61181_img_3.gif">  переводит данные четыре точки <i>z</i><sub>1</sub>, <i>z</i><sub>2&l...

Докажите, что условием того, что четыре точки <i>z</i><sub>0</sub>, <i>z</i><sub>1</sub>, <i>z</i><sub>2</sub>, <i>z</i><sub>3</sub> лежат на одной окружности (или прямой) является вещественность числа   <img align="absMIDDLE" src="/storage/problem-media/61180/problem_61180_img_2.gif">

Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде  <i>Bz</i> – <span style="text-decoration: overline;"><i>B</i></span> <span style="text-decoration: overline;"><i>z</i></span> + <i>C</i> = 0,  где <i>C</i> – чисто мнимое число.

Докажите, что прямая, проходящая через точки <i>z</i><sub>1</sub> и <i>z</i><sub>2</sub> – это геометрическое место точек <i>z</i>, для которых  <img width="57" height="47" align="MIDDLE" border="0" src="/storage/problem-media/61178/problem_61178_img_2.gif"> = <img width="57" height="49" align="MIDDLE" border="0" src="/storage/problem-media/61178/problem_61178_img_3.gif">.

z<sub>2</sub>, <i>z</i><sub>1</sub>, <i>z</i><sub>0</sub> лежат на одной прямой тогда и только тогда, когда   <img align="absmiddle" src="/storage/problem-media/61177/problem_61177_img_2.gif">   – вещественное число, или   <img width="57" height="47" align="MIDDLE" border="0" src="/storage/problem-media/61177/problem_61177_img_3.gif"> = <img width="57" height="49" align="MIDDLE" border="0" src="/storage/problem-media/61177/problem_61177_img_4.gif">.

Докажите, что угол между прямыми, пересекающимися в точке <i>z</i><sub>0</sub> и проходящими через точки <i>z</i><sub>1</sub> и <i>z</i><sub>2</sub>, равен аргументу отношения  <img align="absmiddle" src="/storage/problem-media/61176/problem_61176_img_2.gif">

Пусть <i>z</i><sub>1</sub> и <i>z</i><sub>2</sub> – фиксированные точки комплексной плоскости. Дайте геометрическое описание множеств всех точек <i>z</i>, удовлетворяющих соотношениям:

  а)  arg <img width="50" height="47" align="MIDDLE" border="0" src="/storage/problem-media/61175/problem_61175_img_2.gif"> = 0;   б)  arg <img width="50" height="47" align="MIDDLE" border="0" src="/storage/problem-media/61175/problem_61175_img_3.gif"> = 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка