Олимпиадные задачи по теме «Вспомогательная раскраска» для 6 класса - сложность 2 с решениями

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.

Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, <i>не обязательно положительное</i>. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)<div align="center"><img src="/storage/problem-media/116845/problem_116845_img_2.gif"></div>

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.

Какова площадь поверхности невидимого бруска?

<center><i> <img align="absmiddle" src="/storage/problem-media/116065/problem_116065_img_2.gif"> </i></center>

На столе в виде треугольника выложены28монет одинакового размера (рис.). Известно, что суммарная масса любой тройки монет, которые попарно касаются друг друга, равна10 г. Найдите суммарную массу всех18 монет на границе треугольника.

<center><i> <img align="absmiddle" src="/storage/problem-media/115493/problem_115493_img_2.gif"> </i></center>

На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Можно ли ходом коня обойти все клетки шахматной доски, начав с клетки<i>а1</i>, закончив в клетке<i>h8</i>и на каждой клетке доски побывав ровно один раз?

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.

Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).

Докажите, что число вертикально лежащих косточек чётно.

В центре куба<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_2.gif">сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_3.gif">по одному разу.

Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка