Олимпиадные задачи по теме «Математический анализ» для 6-8 класса - сложность 4 с решениями
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
Положительные числа <i>х</i><sub>1</sub>, ..., <i>х<sub>k</sub></i> удовлетворяют неравенствам <img align="absmiddle" src="/storage/problem-media/109199/problem_109199_img_2.gif">
а) Докажите, что <i>k</i> > 50.
б) Построить пример таких чисел для какого-нибудь <i>k</i>.
в) Найти минимальное <i>k</i>, для которого пример возможен.
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
Для любых натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>m</sub></i> сумма <img align="absmiddle" src="/storage/problem-media/73620/problem_73620_img_2.gif"> не равна нулю. Докажите это.
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?
Для произвольного числа $x$ рассмотрим сумму
$$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$
Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Назовём тройку чисел<i>триплетом</i>, если одно из них равно среднему арифметическому двух других. Последовательность $(a_n)$ строится следующим образом: $a_0 = 0$, $a_1 = 1$ и при $n > 1$ число $a_n$ — такое минимальное натуральное число, большее $a_{n-1}$, что среди чисел $a_0$, $a_1$, ..., $a_n$ нет трёх, образующих триплет. Докажите, что $a_{2023} \leqslant 100,000$.