Олимпиадные задачи по теме «Математический анализ» для 2-6 класса
Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:
1) <i>x</i>*<i>x</i> = 0,
2) <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.
Найдите 1993*1932.
Пусть α – действительное положительное число, <i>d</i> – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на <i>d</i>, равно [<sup>α</sup>/<sub><i>d</i></sub>].