Олимпиадные задачи по теме «Математический анализ» для 11 класса - сложность 1 с решениями

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Числовая функция  <i>f</i> такова, что для любых <i>x</i> и <i>y</i> выполняется равенство  <i>f</i>(<i>x + y</i>) = <i>f</i>(<i>x</i>) + <i>f</i>(<i>y</i>) + 80<i>xy</i>.  Найдите  <i>f</i>(1), если  <i>f</i>(0,25) = 2.

<i>Определение.</i>Пусть функция<i>f</i>(<i>x</i>,<i>y</i>) задана во всех точках плоскости с целыми координатами. Назовем функцию<i>f</i>(<i>x</i>,<i>y</i>)<i>гармонической</i>, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть: <i>f</i>(<i>x</i>,<i>y</i>)=1/4(<i>f</i>(<i>x</i>+1,<i>y</i>)+<i>f</i>(<i>x</i>-1,<i>y</i>)+<i>f</i>(<i>x</i>,<i>y</i>+1) +<i>f</i>(<i>x</i>,<i>y</i>-1)). Пусть<i>f</i>(<i>x</i>,<i>y</i>) и<...

Докажите, что функцияcos$\sqrt{x}$не является периодической.

Постройте функцию, определенную во всех точках вещественной прямой и непрерывную ровно в одной точке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка