Олимпиадные задачи по теме «Ряды» для 7-11 класса - сложность 4-5 с решениями

а) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?

Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.

  а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?

  б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.

а) На плоскости даны<i>n</i>векторов, длина каждого из которых<nobr>равна 1.</nobr>Сумма всех<i>n</i>векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех<nobr><i>k</i> = 1,</nobr>2, ...,<i>n</i>выполнялось следующее условие: длина суммы первых<nobr><i>k</i> векторов</nobr>не<nobr>превышает 3.</nobr>б) Докажите аналогичное утверждение для <i>n</i> векторов с <nobr>суммой 0,</nobr> длина каждого из которых не <nobr>превосходит 1.</nobr> в) Можно ли заменить <nobr>число 3</nobr> в <nobr>пункте а)</nobr> меньшим? Постарайтесь улучшить оценку и в <nobr>пункте б).</nobr>

Может ли быть так, что   а)  σ(<i>n</i>) > 3<i>n</i>;   б)  σ(<i>n</i>) > 100<i>n</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка