Олимпиадные задачи по теме «Производная» - сложность 5 с решениями
Производная
НазадДля заданных натуральных чисел <i>k<sub>0</sub></i><<i>k<sub>1</sub></i><<i>k<sub>2</sub></i> выясните, какое наименьшее число корней на промежутке <nobr>[0; 2π)</nobr> может иметь уравнение вида sin<i>(k<sub>0</sub>x</i>)+<i>A<sub>1</sub></i>·sin(<i>k<sub>1</sub>x</i>) +<i>A<sub>2</sub></i>·sin(<i>k<sub>2</sub>x</i>)=0где<i>A<sub>1</sub></i>,<i>A<sub>2</sub></i>– вещественные числа.
Докажите, что для угла Брокара$\varphi$выполняются следующие неравенства: а)$\varphi^{3}{}$$\le$($\alpha$-$\varphi$)($\beta$-$\varphi$)($\gamma$-$\varphi$); б)8$\varphi^{3}{}$$\le$$\alpha$$\beta$$\gamma$(<i>неравенство Йиффа</i>).