Олимпиадные задачи по теме «Последовательности и ряды функций» для 9-10 класса
Последовательности и ряды функций
НазадВысота<i> SO </i>правильной четырёхугольной пирамиды<i> SABCD </i>образует с боковым ребром угол<i> α </i>, объём этой пирамиды равен<i> V </i>. Вершина второй правильной четырёхугольной пирмиды находится в точке<i> S </i>, центр основания – в точке<i> C </i>, а одна из вершин основания лежит на прямой<i> SO </i>. Найдите объём общей части этих пирамид.
Объём правильной четырёхугольной пирамиды<i> SABCD </i>равен<i> V </i>. Высота<i> SP </i>пирамиды является ребром правильного тетраэдра<i> SPQR </i>, плоскость грани<i> PQR </i>которого перпендикулярна ребру<i> SC </i>. Найдите объём общей части этих пирамид.
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, <i>A</i><sub>4</sub>, <i>A</i><sub>5</sub>, <i>A</i><sub>6</sub> делят окружность радиуса 1 на шесть равных частей. Из <i>A</i><sub>1</sub> провёден луч <i>l</i><sub>1</sub> в направлении <i>A</i><sub>2</sub>, из <i>A</i><sub>2</sub> – луч <i>l</i><sub>2</sub> в направлении <i>A</i><sub>3</sub>, ..., из <i>A</i><sub>6</sub> – луч <i>l</i><sub>6</sub> в направлении <i>A</i><s...
Найдите общую формулу для коэффициентов ряда<div align="CENTER"> (1 - 4<i>x</i>)<sup>- $\scriptstyle {\textstyle\frac{1}{2}}$</sup> = 1 + 2<i>x</i> + 6<i>x</i><sup>2</sup> + 20<i>x</i><sup>3</sup> +...+ <i>a</i><sub>n</sub><i>x</i><sup>n</sup> +... </div>